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We analyze the harmonic elastic string driven through a continuous random potential above the depinning
threshold. The velocity exponentb=0.33s2d is calculated. We observe a crossover in the roughness exponent
z from the critical value 1.26 to the asymptoticslarge forced value of 0.5. We calculate directly the velocity
correlation function and the corresponding correlation length exponentn=1.29s5d, which obeys the scaling
relationn=1/s2−zd, and agrees withnFS, the finite-size-scaling exponent of fluctuations in the critical force.
Surprisingly, the velocity correlation function is nonuniversal at short distances.
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Driven elastic manifolds in disordered media model the
physics of systems as diverse as charge density wavesf1g,
interfaces in disordered magnetsf2g, contact lines of liquid
menisci on rough substratesf3g, vortices in type-II supercon-
ductorsf4g and crack propagation in solidsf5g.

An elastic manifold, driven through disorder by an exter-
nal force, undergoes a dynamic phase transitionf6g that
arises from competition between the driving force and the
pinning energy due to the disorder, mediated by the elasticity
of the manifold. Analogous to an equilibrium phase transi-
tion, the driving force acts as the control parameter, and the
average center-of-mass velocityv of the manifold acts as
order parameter. Two phases of respectively zero and non-
zero order parameter are separated by the critical forcefc. At
forces below this depinning thresholdfc, the disorder “pins”
the manifold and for long enough times, the velocity of the
manifold is zero. Abovefc, the manifold continues to ad-
vance in avalanches. When the threshold is approached from
abovesf → fc

+d, the mean velocity tends to zero, and typical
length, width and duration of the avalanches diverge. This
critical divergence is characterized by two independent scal-
ing exponents.

Much effort f7–10g has been spent on calculating the uni-
versal exponents, particularly for driven elastic manifolds in
the limit of quasi-static motion. In this limit, inertial terms
are neglected and the force acting on the manifold is as-
sumed independent of velocity. The net force on the mani-
fold comprises a constant driving forcef, a position-
dependent random forceh and an elastic restoring force.
Choosing a harmonic short range elastic force leads to the
following equation of motion for the manifoldh at zero tem-
perature

]thsx,td = f + h„x,hsx,td… + ]x
2hsx,td. s1d

In general, the manifold is represented as a single-valued
function hsx,td defined over aD-dimensional transversal
spacex, moving in a sD+1d-dimensional disorder. In this

paper, we consider one discrete dimensionD=1 with peri-
odic boundary conditions for the string of lengthL sx+L is
identified withxd and for the disorder of lateral extensionM
sh+M is identified withh, up to a winding termd. The con-
tinuous disorder of unit strength and unit correlation range is
constructed like inf11g.

In what follows, we numerically investigate the dynamics
of the s1+1d-dimensional string above the depinning thresh-
old. Convergence of the dynamical solution is ensured by
exploiting the particular analytical structuref12,13g of the
equation of motion: it has a unique periodic solution for each
disorder sample in thet→` limit. Having found this unique
periodic solution, we are thus certain to have reached the
asymptotic regime and to have shaken off all influence of
arbitrary initial conditions. The asymptotic periodic solution
for each disorder sample is constructed to desired precision
using a continuous integration routine for Eq.s1d. Averaging
observables over one period and over disorder samples, we
calculate the velocity exponentb and describe in detail how
the correlation length diverges asf → fc

+.
In the thermodynamic limit, the string velocity obeys a

power law: v,sf − fcdb for f → fc. On finite systems, the
critical force fc

smpl fluctuates from sample to sample, putting
a limit on how small the control parameterf −kfc

smpll can be
made without introducing undesired corrections to scaling
relations; a limit from which previous numerical calculations
suffer f8,14g.

We are able to determine the exact sample-dependent de-
pinning thresholdfc

smpl thanks to a recent algorithmf15g. The
sample critical force itself shows non-negligible fluctuations
of the order ofs fc

<L−1/nFS. The algorithm also finds the final
critical configurationhc and the roughness exponentz at de-
pinning f11g.

Knowing the critical forcefc
smpl of each sample, we plot

the time- and disorder-averaged velocityv againstf − fc
smpl.

Thus we eliminate the statistical noise due to the fluctuating
critical force, and obtain extraordinarily clean data. Further-
more, the control parameterf − fc

smpl can be made arbitrarily
small, which is not possible when usingf −kfc

smpll.
The mean velocity on afinitesample shows three different

regimesssee Fig. 1d: For very smallf − fc
smpl, the motion of

the entire string is correlated, and it behaves effectively like
a single particlefv,sf − fc

smpld1/2g. At intermediate forces, the
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string is correlated on length-scalesj and moves collectively
fv,sf − fc

smpldbg. At high forces the motion is essentially un-
correlatedsv, fd.

At f = fc
smpl, the finite dynamical systemfEq. s1dg sin the

t→` limit d undergoes a saddle node bifurcation between a
staticspinnedd and a periodicsdepinnedd solution; the global
velocity minimum changes from stable to unstable. For very
small positivef − fc

smpl, the string spends the major part of its
time-period passing through the velocity minimum, and neg-
ligibly little time completing its orbit. The motion through

the minimum is dominated by the modeh̃ with the largest
eigenvalue in a linear stability analysis around the critical

configurationhc. The modeh̃ moves at a velocity equal to

f − fc
smpl plus quadratic and higher corrections inh̃. Hence we

can express the time spent inside the minimum as:esdh/vd
=efdh/ sf − fc

smpl+ch̃2dg=Tisf − fc
smpld−1/2, to first order in f

− fc
smpl. The remaining timeTo spent outside the velocity

minimum depends only weakly onf − fc
smpl. This yields for

the velocity as a function of force:

M/v = T = To + Tisf − fc
smpld−1/2. s2d

As shown in Fig. 1, this function—combining the effective
single-particle exponent one halffv,sf − fc

smpld1/2g for very
small forces with the saturation at slightly larger forces—fits
the data perfectly.

At intermediate forces, the dynamics leave the single-
particle regime and enter the regime of critical collective
motion. The crossover takes place when the dynamic corre-
lation lengthj, which diverges asj,sf − fcd−n, equals the
system sizeL f16g. It follows that the difference between the
corresponding crossover force and the sample critical force
scales asL−1/n. This scaling is quite slow because of the
small exponent 1/n<0.7, as our data confirms. The other

crossover, between the critical region and the linear regime,
is independent of system size.

Between the two crossovers lies the window of collective
behavior, small and slowly growing withL: Only strings of
lengthL*512 show any significant evidence for critical be-
havior, and even forL=2048ssee inset of Fig. 1d the window
is less than two decades. These pronounced finite-sample-
size effects limiting the critical windowsalso observed in the
CDW modelf17gd could obscure critical behavior in experi-
mental situations. For example, in an experiment of a liquid-
solid contact line advancing on a disordered substratef18g
the sample size, i.e. the capillary length acting as upper cut-
off, is L<200 in units of the disorder correlation length. For
these small samples we expect the window of collective be-
havior to be hardly noticable and finite-size effects to domi-
nate.

When extrapolating data to the thermodynamic limit, we
have to carefully choose the lateral sample size:M has to be
of the order of the typical widthW of a string of lengthL at
depinning. When increasingL, W scales asLz, z being the
roughness exponent. Hence the lateral sample sizeM has to
scale asLz, too. Otherwise, ifM is scaled with an exponent
z8,z, the periodic sample is too short, the string wraps
around it, and generates correlations which mix in properties
of the charge density wave modelsCDW, M ,1d, itself
member of a different universality classf19g. If on the other
handM scales withz8.z, the sample is too long and con-
tains aboutM /W,Lz8−z independent critical configurations
of size L3W. Each of these configurations has a slightly
different local critical force, and the critical force of the en-
tire sample is given by their maximum, and not their mean.
Consequently the critical force of a sample of sizeM @W
overestimatesfc, even in the thermodynamic limit. We there-
fore use disorder samples with a length ofM ,Lz when in-
vestigating the mean velocity.

Analyzing the mean velocity inside the window of critical
collective behavior, we findb=0.33s2d ssee inset of Fig. 1d.
In comparison,b has been determined in the framework of
the functional renormalization group, so far the only analyti-
cal approach capable of properly treating the critical dynam-
ics of elastic interfaces in random media. One-loop calcula-
tions ine=D−4 yield b=1−e /9 f7,10g, and recent two-loop
calculationsf9g yield an estimate ofb=0.2s2d. Our value for
b also compares well with the onefb=0.35s5dg found in a
direct Monte Carlo simulation of an advancing magnetic do-
main wall in a 2D random Ising systemf20g, showing that
complex domain boundary dynamics can be explained by the
model of the elastic string in a random potential.

Our value forb is larger than previous numerical esti-
mates on continuous systems 0.22s2d f14g and on automaton
models 0.25s3d f10g. In these studies, however,v was plotted
againstf −kfc

smpll, andb was probably measured partly inside
the critical window and partly inside the finite-size-effect
region where the velocity saturates, leading tob being un-
derestimated.

At the depinning threshold the typical sizej of avalanches
diverges. Now, if two points on the string take part in the
same avalanche, they have correlated instantaneous veloci-
ties. Therefore, the typical length of avalanches shows up as

FIG. 1. Mean velocity v of the elastic string vsf − fc
smpl

sL=128, M =195, 18 samplesd. The window of critical power law
behavior is sandwiched between the single-particle regimev, f1/2

at very smallf − fc
smpl—fitted to Eq.s2d—and linearv, f behavior

at large f. Inset: critical window for larger system sizes
L=512, . . . ,2048 withM ,Lz. Slope on log-log plot yields the ve-
locity exponentb=0.33s2d.
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the characteristic length scale in the velocity correlation
function, and diverging avalanch sizes are equivalent to a
diverging correlation lengthj.

Whereas previous work did not succeed in accessingj
directly, we are able to compute this dynamic correlation
length from the velocity correlation function and, indepen-
dently, the structure factor. In our continuous calculation,
contrary to automaton models, the instantaneous velocities
vsx,td are readily available, and the velocity correlation
function can be computed unequivocally:

Cvsxd = kvsxdvs0dlc = o
x8

L

kfvsx8 + x,td − v̄gfvsx8,td − v̄glt.

We analyze this correlation functionCvsxd by means of
the functional form

Cvsxd . C0x
−ke−x/j s3d

to capture exponential decay on long distances—specified by
the correlation lengthj—and algebraic behavior on short
distances.

Much to our surprise, the velocity correlations are nonuni-
versal: the exponentk characterizing the algebraic short-
distance behavior depends onf − fc, unlike previously
thoughtf7,8g. Consequently, the correlation functionsCvsxd
for different values off − fc cannot be made to collapse on
one single master curvefsee Fig. 2 forCvsxd as a function of
x/jg. The correlation function being nonuniversal makes it
also difficult to extractn—the universal exponent of correla-
tion length divergence—from a scaling plot. We therefore
calculate the correlation lengthj by means of individual
three-parameter fits of the data to Eq.s3d for given values of
f − fc ssee inset of Fig. 2d. It is then possible to unambigu-
ously determine the exponentn that characterizes the corre-
lation length divergencej,sf − fcd−n.

For the correlation length exponent we find a value of

n=1.29s5d which agrees well withnFS=1.33s1d found in a
finite-size-scaling analysis of sample-to-sample fluctuations
of the critical forcef21g. Hence we confirm that the dynamic
correlation length exponent and the finite-size-scaling corre-
lation length exponent are identicaln=nFS f7,9g. Further-
more, our value forn obeys the statistical tilt symmetry re-
lation n=1/s2−zd f10g. Concerning the nonuniversality of
the correlation function, we have not attempted to establish a
definite functional relation betweenk and f − fc.

An avalanche of typical lengthj has a typical widthw
which scales likew,jz. As a second method to estimate the
roughness exponentz, we study the time- and disorder-
averaged structure factorSsqd, which behaves like 1/q1+2z,
when defined asSsqd=khsqdhs−qdlc with hsqd=ox

Leiqxhsxd.
At large driving forcesf →`, the roughness exponent of

the harmonic elastic string isz=1/2: Thenoise due to the
disorder becomes equivalent to thermal noise, which can be
seen from expanding the disorder termh in the equation of
motion fEq. s1dg—transformed to the center of mass refer-
ence frame—in powers ofv−1< f−1, yielding a dstd corre-
lated noise to first order. At depinning, on the other hand, the
roughness exponent takes on the valuez=1.26s1d f11g.

Inside the critical window, both these values forz show
up in the structure factor, and characterize two different
ranges ofq separated by the inverse of the correlation length:
for large wave vectorssq*2p /jd the structure factor dis-
plays the critical roughness, whereas at small wave vectors
sq&2p /jd it shows the thermal roughness. Figure 3 tracks
the crossover between the two regimes asf → fc

+, illustrating
the diverging correlation lengthj. The corresponding corre-
lation length exponentn is consistent with our value calcu-
lated from the velocity correlation function, but less precise.

In our calculation of the correlation function, the lateral
sizeM must be chosen sufficiently large for the string not to
notice the periodicity of the disorder—otherwise, the struc-
ture factor displays, in addition to the two regimes men-
tioned, the roughness of a CDWszCDW=3/2 f19gd, in thoseq
modes that have not yet decorrelated after one period. The

FIG. 2. Connected velocity-velocity correlationsCvsxd for dif-
ferent driving forcesf − fc sL=512, M =20000, 700 samplesd. The
distancex is rescaled by the correlation lengthj,sf − fcd−n. Using
Eq. s3d as functional template, the correlation function shows a
short distance exponentk depending onf − fc, and thus is nonuni-
versal. The correlation lengthj and its exponentn ssee insetd are
obtained from individual fits.

FIG. 3. The structure factorkSsqdl,1/q1+2z for different values
of f − fc sL=512,M =20000, 200 samplesd. Two regimes of different
roughnessz are visible: At smallq valuesz=1/2, while for largeq,
z=1.26. The crossover tends toward zero forf → fc, illustrating the
diverging correlation length. The data is plotted against 2 sinsq/2d
in order to minimize lattice artifacts. Curves for differentf − fc are
offset along they axis, and lines are guides to the eye.
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modeq decorrelates in a time,q−z with z the dynamic ex-
ponent. This implies that the smallest mode 2p /L needs a
distance of roughlyLz@Lzsz<1.5d to decorrelate. We there-
fore have to choose a disorder period ofM @Lz in our analy-
sis of Ssqd and Cvsxd, in order to eliminate autocorrelation
effects in the largest length-scales.

In contrast, in our initial analysis of the mean velocity we
were justified in adopting a scalingM ,Lz because the ef-
fective string viscosity—which determinesb—is caused by
pinning on length scalesbelow j. The shorter periodicity
M ,Lz thus does not influence the velocity exponentb.

At very largeM, the sample critical forcefc
smpl becomes

too large to be used as the critical force. We therefore calcu-
late a mean critical forcefc

` from a finite-size-scaling ansatz:
The average sample critical force is taken to depend on the
sample lengthL as fc

`−kfc
smplsLdl,L−1/nFS. The asymptotic

value fc
`=1.913s2d is then used as a mean critical force when

analyzing the velocity correlations and the structure factor.
When investigating the correlation lengthj directly via

Cvsxd and Ssqd, we do not need to knowfc
smpl in order to

avoid the crossover from the critical window into the finite-
size-effect region: We simply limit our analysis to suffi-

ciently small values ofj /L. In addition, the smallest value of
f − fc

` analyzed is larger than typical fluctuations infc
smpl,

which are therefore negligible.
In conclusion, we analyze the quasistatic dynamics of the

harmonic elastic string driven through a random potential,
above the depinning transition. We calculate the exact peri-
odic solution for each sample, and encounter large finite-
sample-size effects, which will have repercussions in experi-
mental situations. Knowing exactly the sample critical force
enables us to identify the limited window of critical collec-
tive behavior and to determine the velocity exponentb
=0.33s2d. We investigate the velocity correlation function,
determine the correlation length exponentn=1.29s5d, and
confirm that it both obeys the statistical tilt symmetry and
agrees with the finite-size-scaling correlation length expo-
nent. Surprisingly, we find a nonuniversal functional form for
the velocity correlation function: the exponentk describing
the algebraic short distance behavior depends on the control
parameterf − fc.
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