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Critical exponents of the driven elastic string in a disordered medium
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We analyze the harmonic elastic string driven through a continuous random potential above the depinning
threshold. The velocity exponept=0.332) is calculated. We observe a crossover in the roughness exponent
¢ from the critical value 1.26 to the asymptofiarge force value of 0.5. We calculate directly the velocity
correlation function and the corresponding correlation length exporrett295), which obeys the scaling
relationv=1/(2-¢), and agrees withg, the finite-size-scaling exponent of fluctuations in the critical force.
Surprisingly, the velocity correlation function is nonuniversal at short distances.

DOI: 10.1103/PhysRevE.71.061601 PACS nuni®)er64.60—i, 05.70.Ln, 68.08-p

Driven elastic manifolds in disordered media model thepaper, we consider one discrete dimensidnl with peri-
physics of systems as diverse as charge density wiaes odic boundary conditions for the string of lendth(x+L is
interfaces in disordered magng®], contact lines of liquid identified withx) and for the disorder of lateral extensith
menisci on rough substratgs)], vortices in type-Il supercon- (h+M is identified withh, up to a winding term The con-

ductors[4] and crack propagation in solids]. tinuous disorder of unit strength and unit correlation range is
An elastic manifold, driven through disorder by an exter-constructed like irf11]. S . .
nal force, undergoes a dynamic phase transifi6h that In what follows, we numerically investigate the dynamics

arises from competition between the driving force and the?f the (1+1)-dimensional string above the depinning thresh-
pinning energy due to the disorder, mediated by the elasticitp!d- Convergence of the dynamical solution is ensured by
of the manifold. Analogous to an equilibrium phase transi-€XPloiting the particular analytical structuf@2,13 of the
tion, the driving force acts as the control parameter, and th§9uation of motion: it has a unique periodic solution for each
average center-of-mass velocity of the manifold acts as disorder sample in the—ce limit. Having found this unique
order parameter. Two phases of respectively zero and noferiodic solution, we are thus certain to have reached the

zero order parameter are separated by the critical fordt asymptotic regime and to have shaken off all influence of
forces below this depinning threshdld the disorder “pins” arbitrary initial conditions. The asymptotic periodic solution

the manifold and for long enough times, the velocity of thefor €ach disorder sample is constructed to desired precision
manifold is zero. Abovef,, the manifold continues to ad- USiNg & continuous integration routine for Kdj). Averaging
vance in avalanches. When the threshold is approached frofPServables over one period and over disorder samples, we
above(f— f7), the mean velocity tends to zero, and typical calculate th_e velocity e>_<poneptand Qescrlbe in detail how
length, width and duration of the avalanches diverge. Thighe correlation length d|_ver_ge_s as- . . .
critical divergence is characterized by two independent scal- In the thermodyna;mc limit, the string velocity obeys a
ing exponents. power IaW:v~(}‘—fc) for f—f.. On finite systems, th.e
Much effort[7-10] has been spent on calculating the uni- critical force f§"* fluctuates from sample to sgnTE)Ie, putting
versal exponents, particularly for driven elastic manifolds in® limit on how small the control parameter(f.™") can be
the limit of quasi-static motion. In this limit, inertial terms mMade without introducing undesired corrections to scaling
are neglected and the force acting on the manifold is agtelations; a limit from which previous numerical calculations
sumed independent of velocity. The net force on the manisuffer [8,14]. .
fold comprises a constant driving forcé a position- ~We are able to deltermlne the exact sample-dependent de-
dependent random force and an elastic restoring force. Pinning thresholdg™ thanks to a recent algorithfd5]. The
Choosing a harmonic short range elastic force leads to thgample critical force itself shows non-negligible fluctuations
following equation of motion for the manifold at zero tem-  Of the order ofoy_~L™"%s. The algorithm also finds the final
perature critical configurationh; and the roughness exponehat de-
pinning [11].
ah(x,t) = f + 7(x,h(x,1)) + Zh(x,1). (1) Knowing the critical forcefS™ of each sample, we plot
) ) ) the time- and disorder-averaged velocityagainstf - fS"°!
In general, the manifold is represented as a single-valuegp s e eliminate the statistical noise due to the fluctuating
function h(x,t) defined over aD-dimensional transversal cjtic) force, and obtain extraordinarily clean data. Further-
spacex, moving in a(D+1)-dimensional disorder. In this ore the control parametérfS™' can be made arbitrarily
small, which is not possible when usirig (fS™").
The mean velocity on finite sample shows three different

*Electronic address: duemmer@Ips.ens.fr regimes(see Fig. 1: For very smallf—fS™ the motion of
"Electronic address: krauth@Ips.ens.fr; URL: the entire string is correlated, and it behaves effectively like
http://www.Ips.ens.fr/~krauth a single particlgv ~ (f—fS"P)1/2], At intermediate forces, the
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crossover, between the critical region and the linear regime,
is independent of system size.

Between the two crossovers lies the window of collective
behavior, small and slowly growing with: Only strings of
lengthL =512 show any significant evidence for critical be-
havior, and even fok =2048(see inset of Fig. Jlthe window

2 is less than two decades. These pronounced finite-sample-

size effects limiting the critical windowalso observed in the
CDW model[17]) could obscure critical behavior in experi-
mental situations. For example, in an experiment of a liquid-
solid contact line advancing on a disordered substrasg
0.1 the sample size, i.e. the capillary length acting as upper cut-
5 off, is L=200 in units of the disorder correlation length. For
10 smpl 1000 these small samples we expect the window of collective be-
f-te havior to be hardly noticable and finite-size effects to domi-
nate.

When extrapolating data to the thermodynamic limit, we

have to carefully choose the lateral sample sMehas to be

at very smallf—fﬁ’“”'—fitted to Eq.(2)—and lineary ~ f behavior of the order of the typical widthV of a string of length_ at

gl : . . :
at large f. Inset: criical window for larger system sizes d€PinNing. When increasing, W scales ad.*, { being the
L=512, ...,2048 wittV ~L¢. Slope on log-log plot yields the ve- roughness exponent. Hence the lateral sampleMizeas to

locity exponent3=0.332). scale ad ¢, too. Otherwise, iM is scaled with an exponent

' <, the periodic sample is too short, the string wraps
around it, and generates correlations which mix in properties
of the charge density wave modéCDW, M~ 1), itself
member of a different universality clags9]. If on the other
handM scales with{’ > ¢, the sample is too long and con-
éains aboutM /W~ L¢'~¢ independent critical configurations
of size LXW. Each of these configurations has a slightly

1000
=]

0.2 . .
0.001

smpl
-1, P

v~ (f - .f c)ﬂ S,
single particle 5%

FIG. 1. Mean velocityv of the elastic string vsf—fS"
(L=128,M =195, 18 samplgs The window of critical power law
behavior is sandwiched between the single-particle regimd/?

string is correlated on length-scaléand moves collectively
[v~ (f-fS"P)5]. At high forces the motion is essentially un-
correlated(v ~ f).

At f=fS"! the finite dynamical systeffEq. (1)] (in the
t— oo limit) undergoes a saddle node bifurcation between
static (pinned and a periodiddepinned solution; the global ifferentlocal critical force, and the critical force of the en-

velocity minimum changes from stable to unstable. For very. . . . .
tire sample is given by their maximum, and not their mean.

small positivef —f."'P, the string spends the major part of its Consequently the critical force of a sample of she>W

time-period passing through the velocity minimum, and neg- g . T
ligibly little time completing its orbit. The motion through overestimates,, even in the thermodynamic limit. We there-

o ) _ ~ fore use disorder samples with a lengthMf~L¢ when in-
the minimum is dominated by the modewith the largest vestigating the mean velocity.

eigenvalue in a linear staEiIity analysis around the critical Analyzing the mean velocity inside the window of critical
configurationh.. The modeh moves at a velgcity equal to collective behavior, we fingg=0.332) (see inset of Fig. L

f— 5" plus quadratic and higher correctionshinHence we  In comparison8 has been determined in the framework of
can express the time spent inside the minimum/fésh/v) the functional renormalization group, so far the only analyti-
:f[dh/(f_fsmpl+c'ﬁ2)]:Ti(f_fsmpb—llzy to first order in f f:al approa(_:h _capable of.properly treating the critical dynam-
—gsmpl Thecremaining timeTc spent outside the velocity ics of'elasnc |nte.rfaces in random media. One-loop calcula-
minimum depends only wea(I)dy of- S This yields for tions ine=D -4 yield f=1-¢/9 [7’1(§' and recent two-loop
the velocity as a function of force: calculationg 9] yield an e§t|mate 0B=0.22). Our valug for

B also compares well with the orjg8=0.355)] found in a
o smph—1/2 direct Monte Carlo simulation of an advancing magnetic do-

Mip =T =T+ T(f - ") ~2 (2) " main wall in a 2D random Ising systef20], showing that

complex domain boundary dynamics can be explained by the

As shown in Fig. 1, this function—combining the effective model of the elastic string in a random potential.

single-particle exponent one hdlf ~ (f—fS"")1/2] for very Our value forg is larger than previous numerical esti-
small forces with the saturation at slightly larger forces—fitsmates on continuous systems 022 14] and on automaton
the data perfectly. models 0.283) [10]. In these studies, howeverwas plotted

At intermediate forces, the dynamics leave the singleagainstf—(fimPB, andpB was probably measured partly inside
particle regime and enter the regime of critical collectivethe critical window and partly inside the finite-size-effect
motion. The crossover takes place when the dynamic corraegion where the velocity saturates, leadingBtdeing un-
lation length&, which diverges ag~ (f-f,)7", equals the derestimated.
system size. [16]. It follows that the difference between the At the depinning threshold the typical sief avalanches
corresponding crossover force and the sample critical forceiverges. Now, if two points on the string take part in the
scales ad"*. This scaling is quite slow because of the same avalanche, they have correlated instantaneous veloci-
small exponent 1#=0.7, as our data confirms. The other ties. Therefore, the typical length of avalanches shows up as
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a(f-1)" FIG. 3. The structure factdS(q)) ~ 1/g**# for different values

of f—f. (L=512,M=20000, 200 samplgsTwo regimes of different
roughnesg are visible: At smallg values{=1/2, while for largeq,
{=1.26. The crossover tends toward zero ffes f., illustrating the
diverging correlation length. The data is plotted against &g
in order to minimize lattice artifacts. Curves for differeitf; are
offset along they axis, and lines are guides to the eye.

FIG. 2. Connected velocity-velocity correlatio@s(x) for dif-
ferent driving forcesf—f, (L=512, M=20000, 700 sampl¢sThe
distancex is rescaled by the correlation lenggh- (f—f;)~". Using
Eqg. (3) as functional template, the correlation function shows a
short distance exponertdepending orf—f, and thus is nonuni-
versal. The correlation length and its exponeni (see insetare
obtained from individual fits. vr=1.295) which agrees well withves=1.331) found in a

finite-size-scaling analysis of sample-to-sample fluctuations
the characteristic length scale in the velocity correlationof the critical force[21]. Hence we confirm that the dynamic
function, and diverging avalanch sizes are equivalent to &o_rrelaﬂon length exponent gnd the finite-size-scaling corre-
diverging correlation lengtl. lation length exponent are |dentlc§rlz_vps [7,9]. Further-

Whereas previous work did not succeed in accesging More, our value fow obeys the _statlstlcal tilt symmet_ry re-
directly, we are able to compute this dynamic correlationfation »=1/(2-¢) [10]. Concerning the nonuniversality of
length from the velocity correlation function and, indepen-the correlation function, we have not attempted to establish a
dently, the structure factor. In our continuous calculation definite functional relation betweenand f-fc. _
contrary to automaton models, the instantaneous velocities An avalanche of typical lengtl§ has a typical widthw
v(x,t) are readily available, and the velocity correlationWhich scales likav~&. As a second method to estimate the
function can be computed unequivocally: roughness exponeng, we study. the time- ar_1d disorder-
averaged structure fact®(q), which behaves like Xft*%,
when defined as(q)=(h(q)h(-q)). with h(q):E;eiqxh(x).

At large driving forcesf — o, the roughness exponent of
the harmonic elastic string i6=1/2: Thenoise due to the

We analyze this correlation functio@,(x) by means of disorder becomes equivalent to thermal noise, which can be
the functional form seen from expanding the disorder ternin the equation of

o] motion [Eqg. (1)]—transformed to the center of mass refer-
Cu(x) = Coxe™* ) ence frame—in powers af 1~f1 yielding a &(t) corre-
to capture exponential decay on long distances—specified bpted noise to first order. At depinning, on the other hand, the
the correlation lengtié—and algebraic behavior on short roughness exponent takes on the vajeel.261) [11].
distances. Inside the critical window, both these values #bshow

Much to our surprise, the velocity correlations are nonuni-up in the structure factor, and characterize two different
versal: the exponenk characterizing the algebraic short- ranges ofy separated by the inverse of the correlation length:
distance behavior depends of-f;, unlike previously for large wave vector§q= 2w/ §&) the structure factor dis-
thought[7,8]. Consequently, the correlation functio@s(x) plays the critical roughness, whereas at small wave vectors
for different values off —f, cannot be made to collapse on (q=2=/§) it shows the thermal roughness. Figure 3 tracks
one single master cunJsee Fig. 2 foIC,(x) as a function of  the crossover between the two regimed asf?, illustrating
x/&]. The correlation function being nonuniversal makes itthe diverging correlation length The corresponding corre-
also difficult to extractr—the universal exponent of correla- lation length exponent is consistent with our value calcu-
tion length divergence—from a scaling plot. We thereforelated from the velocity correlation function, but less precise.
calculate the correlation length by means of individual In our calculation of the correlation function, the lateral
three-parameter fits of the data to E8) for given values of  sizeM must be chosen sufficiently large for the string not to
f—f. (see inset of Fig. R It is then possible to unambigu- notice the periodicity of the disorder—otherwise, the struc-
ously determine the exponentthat characterizes the corre- ture factor displays, in addition to the two regimes men-
lation length divergencé~ (f—f.)™. tioned, the roughness of a CDWcpw=3/2[19]), in thoseq

For the correlation length exponent we find a value ofmodes that have not yet decorrelated after one period. The

L
Cy(¥) = (w(X)v(0))e = 2 ([v(X" +x,1) = v][v(X',1) —v]).

X
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modeq decorrelates in a time-q* with z the dynamic ex- ciently small values of/L. In addition, the smallest value of

ponent. This implies that the smallest mode/2 needs a f-f7 analyzed is larger than typical fluctuations g™
distance of roughly.?>L%(z~1.5) to decorrelate. We there- \which are therefore negligible.

fore have to choose a disorder period\b#>L¢ in our analy- In conclusion, we analyze the quasistatic dynamics of the
sis of S(q) and C,(x), in order to eliminate autocorrelation harmonic elastic string driven through a random potential,
effects in the largest length-scales. above the depinning transition. We calculate the exact peri-

In contrast, in our initial analysis of the mean velocity we gdic solution for each sample, and encounter large finite-
were justified in adopting a scaling ~L¢ because the ef- sample-size effects, which will have repercussions in experi-
fective string viscosity—which determingg—is caused by  antq) situations. Knowing exactly the sample critical force
pinning on length scalebelow & The shorter periodicity  gapjes ys to identify the limited window of critical collec-

~¢ i i ; : X .
M A':_ thusl doei/ln?rt]mﬂuencle th?[_vellcf)mtyé(sar;(g%nﬁnt tive behavior and to determine the velocity exponght
very largeM, the sample critical Torc€; ' = DeCOMES  —q 339) We investigate the velocity correlation function,
too large to be used as the critical force. We therefore Calcudetermine the correlation length exponent1.295), and
lﬁtneé Z\r/g?:necgg(rfl l?rgr%igg??;?cgr}gi:éi’fgﬂggeigsg?:thconfirm that it both obeys the statistical tilt symmetry and
9 P P ggrees with the finite-size-scaling correlation length expo-

© _/¢SMp 1 -1y ;
sampli_length_ a_s fe=(fe (L)~ L2 Th_Pf asymptotic nent. Surprisingly, we find a nonuniversal functional form for
valuef;=1.9132) is then used as a mean critical force when, o \ejocity correlation function: the exponeatdescribing

analyzing the velocity correlations and the structure factor. yhe aigebraic short distance behavior depends on the control
When investigating the correlation lengéhdirectly via parameterf - ..

C,(x) and S(g), we do not need to knoviS™' in order to
avoid the crossover from the critical window into the finite- We would like to thank P. Le Doussal, S. Guibert, A.
size-effect region: We simply limit our analysis to suffi- Rosso, and K. Wiese for stimulating discussions.
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